

Matematiska institutionen, Uppsala universitet

Handledare: Jonas Rundberg

Ämnesgranskare: Jordi-Lluís Figueras

Examinator: Martin Herschend

Uppsal a universitets l ogotyp

U.U.D.M. Project Report 2024:16

Examensarbete C, 15 hp

Kandidatprogrammet i matematik

Juni 2024

Efficient sampling of solutions
to a system of linear
inequalities in the game
GOALS

André Ramos Ekengren, Oscar Rotander

Uppsal a universitets l ogotyp

Abstract

In this work, two algorithms for generating players in the football game
GOALS are proposed and compared.

The players are generated to fulfil constraints in a 31-dimensional at-
tribute space, as well as requirements on the distribution of the generated
players.

The problem is to find a mathematical description of the problem and
a solution technique so that players can be generated from a uniform
distribution on the space of all possible solutions. The space of points
satisfying the constraints is interpreted as the intersection of a convex
polytope and a hyperplane. This is then transformed to a convex poly-
tope in 30-dimensions where the algorithms are applied. It is shown that
reversing this transformation preserves the uniform distribution and yields
points satisfying all constraints.

We apply two Markov Chain Monte Carlo techniques for sampling in the
convex polytope: Hit-and-run and VaidyaWalk. The samples (X0, . . . , Xn)
generated by these algorithms approach a uniform distribution for large
n, but the variables Xi and Xi+1 are highly correlated. We want low cor-
relation between successive samples and to achieve this we utilize thinning
and parallel chains.

The algorithms are compared based on autocorrelation, trace plots to de-
tect non-random patterns and the runtime of the algorithms. It is shown
that Hit-and-run has better characteristics for this problem and as such
is the preferred algorithm.

1

Contribution

In this chapter we outline the specific contributions of each author to the thesis.
In general, the implementation, testing and gathering of results were done in
collaboration.

More specifically, André wrote the following sections:

• The background in section 1.1

• All the prerequisite theory in section 3

• The introduction to section 4, as well as section 4.2 regarding the Vaidya
walk

• The criteria in section 5.1

• The description of the results of figure 2-6 in section 5.2

• Paragraphs 1-3 and 6-7 in the discussion

• Appendix B

And the following sections were written by Oscar:

• The abstract of the thesis

• The problem specification in section 1.2

• The mathematical interpretation and transformation of the problem, in
section 2

• The hit-and-run algorithm in section 4.1

• The implementation of the algorithms in section 4.3

• Description of the results of figure 7 in section 5.2

• Paragraphs 4-5 in the discussion

• Appendix A

2

Contents

Abstract 1

Contribution 2

1 Introduction 4
1.1 Background . 4
1.2 Problem specification . 5

2 Mathematical interpretation 6
2.1 Isometric transformation to a convex polytope 7

3 Prerequisite theory 9
3.1 Markov Chains . 9
3.2 Markov Chain Monte Carlo . 14

3.2.1 The Metropolis-Hastings algorithm 14
3.2.2 Reducing the dependency 15

4 Sampling methods 16
4.1 Hit-and-run . 17

4.1.1 Choosing a random point on ∂D 17
4.1.2 Finding the distance to the boundary of the convex polytope 17
4.1.3 Choosing the next point 18

4.2 Vaidya Walk . 18
4.3 Implementation . 20

5 Results and analysis 21
5.1 Criteria . 21
5.2 Effects of parameters . 22

6 Discussion 28

A Linear algebra 30

B Probability and Measure theory 30

3

1 Introduction

1.1 Background

GOALS is a Swedish game studio headquartered in Stockholm, dedicated to
developing a football game for both PC and console. The game features mul-
tiplayer modes where users compete against each other in teams or one-on-one
matches. Users build their football teams with virtual characters, each of which
is unique and randomly generated.

Each generated character has 31 attributes (”stats”) that define their perfor-
mance in the game, with values ranging from 10 to 99. These characters also
include other data such as overall rating, team position, gender, nationality,
ethnicity, height, and weight, which define their visual representation in the
game.

The creation of a new random character is initiated by the user from the client,
and the characters are generated on a server where they are stored in a database.
Due to the large user base and high volume of concurrent users, there is a
requirement to generate new characters in less than 20 milliseconds. The stats
are represented as an integer array and are distributed to each client before
playing a match. From this data, the game client renders the characters visually
and sets their limits and abilities as footballers. During a match, each client
remains connected to the server, ensuring all clients and the server have the
same information about each team.

Balancing the game requires careful management of the weights and constraints
related to the 31 stats to ensure matches are competitive, fair, and fun. As
GOALS generates millions of characters over time, achieving a uniform distri-
bution across all possible variations is crucial.

This thesis is done in collaboration with GOALS, and they have tasked us with
finding efficient algorithms for generating the player stats in their game. We
describe the problem further in the coming sections.

4

Figure 1: Player card

1.2 Problem specification

The overall rating (80) is exemplified in the top left of the player portrait in
figure 1. The overall rating is calculated by a weighted sum of all 31 stats,
differently for each position on the field, the difference in weighting is done to
simulate that players with different positions are good at different things, for
example the rating of a striker may barely be affected by the value of defensive-
iq. There are also ”mainstats” which are seen in figure 1 as the headers of the 6
boxes containing all stats. These are also weighted but only depending on the
stats under that mainstat.

There are constraints on the stats and mainstats, for example a stat under a
certain mainstat may be required to be within some distance of the value of that
mainstat. Some stats may also be dependent on each other, such as finishing
and penalties, meaning they also need to be within some distance of each other.
It is also required that the stats lie in the range [10, 99] and the mainstats in
the range [20, 99].

When generating a new player a desired position and overall rating is chosen
randomly by the game. An additional constraint is that the overall rating when
calculated with the weighted sums corresponding to the other positions are less
than the desired overall rating. This is done so that every player is playing
the position they are most suited for, hence a striker with rating 75 is worse at
defending than a defender with rating 75. Given the position and overall rating
we want to find a new player as defined by it’s stats, uniformly chosen from all
valid players.

5

2 Mathematical interpretation

As seen a player is defined completely by the values of its stats, and so we will
consider a player to be a point x ∈ Rn where n is the number of stats in the
game. To generate a valid player of a given position and overall rating, we need
to find a point satisfying all given constraints simultaneously. We interpret each
constraint as a linear inequality or equality, a ·x ≤ b or a ·x = b where a, x ∈ Rn

in the following ways:

The ai’s are different in each case and there may be multiple instances of con-
straints of the same form but with different ai’s and right-hand side values,
these are just the general forms.

• The players rating, given a position, should equal the overall rating.

a1x1 + a2x2 + ...+ anxn = overall rating

Here the ai’s are the coefficients in the weighted sum for that position.

• The rating calculated with the weighted sum corresponding to a different
position than the one we want should be less than the overall rating.

a1x1 + a2x2 + ...+ anxx ≤ overall rating

Here the ai’s are the coefficients in the weighted sum for that position.

• A stat should be within some interval of the mainstat to which it belongs.
min ≤ stati −mainstat ≤ max.

min ≤ −a1x1 − ...− (ai − 1)xi − ...− anxn ≤ max

Which we separate in to two inequalities:

−a1x1 − ...− (ai − 1)xi − ...− anxn ≤ max

a1x1 + ...+ (ai − 1)xi + ...+ anxn ≤ −min

Here the aj ’s represents the coefficients in the weighted sum for the given
mainstat and i is the index of that particular stat.

• Some stats should be within some distance of each other.
−spread ≤ stati − statj ≤ spread.

a1x1 + ...+ aixi + ...− ajxj + ...+ anxn ≤ spread

a1x1 + ...− aixi + ...+ ajxj + ...+ anxn ≤ spread

Where all coefficients are 0 except ai = 1 and aj = 1. Even though the
equation only is xi − xj ≤ spread and xj − xi ≤ spread we want all the
equations on the same form.

6

• A mainstat should be less than max and greater than min.
min ≤ mainstat ≤ max.

a1x1 + ...+ anxn ≤ max

−a1x1 − ...− anxn ≤ −min

Here the ai’s represent the weighted sum for the given mainstat.

• A stats should be less than max and greater than min.
min ≤ stati ≤ max.

a1x1 + ...+ aixi + ...+ anxn ≤ max

−a1x1 − ...− aixi − ...− anxn ≤ −min

Where each aj = 0 for j ̸= i and ai = 1.

In our problem all constraints are of one of these forms, and there is only
one constraint of the first form. Now let A be the matrix containing as rows
every vector (a1, a2, ..., an) and b the column vector containing the right-hand
side of each inequality. And let C be the 1 × n matrix having as its only
row the coefficients in the weighted sum for our desired player position. Then
our solution-space can be represented as the intersection between finitely many
closed halfspaces and a hyperplane, i.e. a convex polytope and a hyperplane.
Hence a valid player is a point x ∈ Rn s.t Ax ≤ b and Cx = d, where d is the
desired overall rating.

Having an equality constraint included, however, is not optimal in our case.
One reason is that one of the methods we use is specialized to convex polytopes,
and is based on interior point methods that require strict inequality. Another
reason is that there is an increase in the punishment of numerical errors when
attempting to find points constricted to the hyperplane. The next section deals
with this problem.

2.1 Isometric transformation to a convex polytope

The goal in this section is to reduce the problem from finding points x ∈ Rn

satisfying Ax ≤ b and Cx = d to finding points y ∈ Rn−1 satisfying A′y ≤ b′ for
some A′ and b′ such that we are left with sampling points from a convex poly-
tope. We show that we can find such matrices and that the solutions to A′y ≤ b′

gives us all the solutions to our problem and that the uniform distribution is
preserved under the transformation.

Theorem 1. Let Ax ≤ b be a convex polytope and Cx = d a hyperplane in Rn

(A is a m × n matrix, b is a m × 1 matrix, C is a 1 × n matrix and d is a
real scalar). Then there is a n× (n− 1) orthogonal matrix N such that for all
y ∈ Rn−1 we have C(Ny) = 0.

7

Proof. Let ci be the first coefficient of C s.t ci ̸= 0 and define:

t := (0, ...,
d

ci
, ..., 0)

Then we get.

C(x− t) = Cx− Ct = d− ci
d

ci
= 0 A(x− t) = Ax−At = b−At

Let UΣV ∗ be the singular value decomposition of C and since C is real we have
V ∗ = V ⊺. We know that the n − r last columns of V make an orthonormal
basis for kerC, and in our case r = 1. Let N be the n× (n− 1) matrix having
as columns those basis vectors. Then for any y ∈ Rn−1 we get C(Ny) = 0 since
N consists of basis vectors for kerC. And N is orthogonal.

Let N be as in theorem 1 and let t be as in the proof of theorem 1. Then given
a point y ∈ Rn−1 such that ANy ≤ b−At, we have C(Ny) = 0 and get

ANy ≤ b−At =⇒ A(Ny + t) ≤ b−At+At = b

C(Ny) = 0 =⇒ C(Ny + t) = Ct = d

Hence given such a y we can construct the point (Ny + t) ∈ Rn that solves our
original system, A(Ny + t) ≤ b and C(Ny + t) = d.

Theorem 2. Let Ax ≤ b be a convex polytope and Cx = d a hyperplane in Rn,
and let N be as in theorem 1 and let t be as in the proof of theorem 1 and define
K := {x ∈ Rn | Ax ≤ b, Cx = d} and K′ := {y ∈ Rn−1 | ANy ≤ b′}. Then the
affine transformation:

T : K′ −→ K y −→ Ny + t

is an isometry.

Proof. First we prove that T is injective. Let y1, y2 ∈ K′, y1 ̸= y2 and suppose
for contradiction that Ny1 + t = Ny2 + t, then

Ny1 + t = Ny2 + t ⇐⇒ Ny1 = Ny2 =⇒ Ny1 −Ny2 = 0 =⇒
N(y1 − y2) = 0 =⇒ y1 = y2

The last implication holds since the columns of N are linearly independent,
therefore T is injective.

Now we prove that T is surjective. Let x ∈ K, then A(x − t) ≤ b − At and
(x− t) ∈ kerC, so x− t can be written as a linear combination of the columns
of N , x − t = a1v1 + . . . + an−1vn−1 where vi is the i : th column vector of
N . Then the point y ∈ Rn−1, y = (a1, . . . , an−1) is such that x − t = Ny and
x = Ny+ t, furthermore since b−At ≥ A(x− t) = ANy we have y ∈ K′, hence
T is surjective.

8

Now we want to show that T preserves distances. Let y1, y2 ∈ K′, y1 ̸= y2 and
y1 = (a1, ..., an−1), y2 = (b1, ..., bn−1) then

∥(Ny1 + t)− (Ny2 + t)∥ = ∥Ny1 −Ny2∥ = ∥(a1 − b1)v1 + ...+ (an−1 − bn−1)vn−1∥ =

=
√
(a1 − b1)2 + ...+ (an−1 − bn−1)2 = ∥y1 − y2∥

Where the third equality holds because all vi’s are pair-wise orthogonal and
∥vi∥ = 1.

Hence T is an isometry.

Theorem 3. Let K, K ′ and T be as in theorem 2, then given a random variable
X with the uniform distribution on K ′. T (X) is a random variable with the
uniform distribution on K.

Proof sketch. Since T is an isometry all distances are preserved and the n −
1 volume of a subset Z ⊂ K′ is the same as the n − 1 volume of T (Z) ⊂
K and therefore the ratios vol(Z)

vol(K′) and vol(T (Z))
vol(K) are equal, hence the uniform

distribution is preserved under T .

And since T is bijective we know that we can find all solutions to our problem,
points x ∈ K, by finding points y ∈ K′.

Now that the problem is described mathematically as having all feasible solu-
tions in a convex polytope, we continue with some prerequisite theory for our
solution methods.

3 Prerequisite theory

In this chapter we introduce the theory of Markov chains and Markov Chain
Monte Carlo, the latter being the type of sampling method chosen to solve our
problem. We use the work done by Robert and Casella [8] as a foundation for
these parts. See appendix B for an introduction to fundamental measure theory,
and most importantly, for the definition of transition probability kernels. We
begin with the theory of Markov chains, as it is the foundation of our sampling
methods.

3.1 Markov Chains

Let n ∈ N, and say we have a sequence of random variables (Xn) with Xn ∈ E,
and transition probabilities dictated by a transition probability kernel K on the
measurable space (E, E). Note that in this work, the focus is on state spaces E
that are continuous, rather than discrete. As such, E will usually be assumed
to be the Borel σ-algebra, B(E). Continuing, it will be useful to introduce the
notation

P (Xn+1 ∈ A |xn) = K(xn, A) =

∫
A

K(xn,dx) (1)

9

for the one-step transition probabilities of that sequence. We proceed by defining
Markov chains.

Definition 1 (Markov Chain). Given a transition probability kernel K on a
measurable space (E, E), a sequence of random variables (Xn) taking values in
E is called a Markov chain if

P (Xn+1 ∈ A |x0, x1, . . . , xn) = P (Xn+1 ∈ A |xn) =

∫
A

K(xn,dx). (2)

That is, the next transition in the chain is independent of past transitions.
We will also focus exclusively on Markov chains that possess another property,
called time-homogeneity. These are Markov chains whose transition dynamics
are independent of time.

Definition 2 (Time-homogeneous Markov chains). A Markov chain (Xn) is
time-homogeneous if for every t ∈ N>0, it holds that

P (Xn+t ∈ A |Xn = x) = P (Xt ∈ A |X0 = x) (3)

Furthermore, for a time-homogeneous Markov chain, we would like to calculate
not just one-step transitions, but also n-step transitions. If for some (x,A) ∈
E × E , we define the one-step transition kernel simply as K1(x,A) := K(x,A),
then it is possible to show the following lemma about the n-step transition kernel
Kn.

Lemma 1 (The n-step transition kernel). for n > 1, the n-step transition kernel
is

Kn(x,A) =

∫
E

Kn−1(y,A)K(x,dy). (4)

and we say that the n-step transition probability is

P (Xn ∈ A |X0 = x0) = Kn(x,A) (5)

when K is a transition probability Kernel.

Additionally, for the purpose of simulation using Markov Chain Monte Carlo
techniques, there are some properties that are essential for a Markov chain
to have. Given a chain, we would for example like to analyse how the initial
starting point affects, if at all, the long-time behaviour of the chain, and whether
it explores the whole state space. Will the chain stabilize and converge to some
distribution? These types of properties are what the rest of this section will
address. We begin with defining for a set A ∈ E , and a Markov chain (Xn), the
number of passages of the chain in A.

Definition 3 (Number of passages). The number of passages of (Xn) in A is
defined as the amount of times the chain enters A

ηA =

∞∑
n=1

IA(Xn). (6)

10

We now turn to the notion of irreducibility of a Markov chain, which essen-
tially is a property that states that no matter the initial point of the chain,
all other points in the state space have a chance to eventually be reached. For
Markov chains with continuous state spaces, we define a ϕ-irreducible Markov
chain.

Definition 4 (ϕ-irreducible Markov chain). A Markov chain (Xn) with tran-
sition probability kernel K is called ϕ-irreducible if for a measure ϕ on (E, E),
and for every A ∈ E such that ϕ(A) > 0, there exists n ≥ 1 such that

P (Xn ∈ A |X0 = x) = Kn(x,A) > 0, ∀x ∈ E. (7)

Next we would like to define the period of a Markov chain, but before we do
that we need to know what a small set is, and what a cycle of a ϕ-irreducible
Markov chain is.

Definition 5 (Small sets). Given a set C ∈ E, if there exists m ∈ N>0 and a
measure νm on (E, E) such that

Km(x,A) ≥ νm(A), ∀A ∈ E , ∀x ∈ C (8)

then C is called a small set, and we will sometimes call such a set νm-small.

Definition 6 (Cycle of a Markov chain). For a ϕ-irreducible Markov chain, let
C be a νM -small set, and let d be defined as

d = gcd{m ≥ 1 : ∃δm > 0, such that C is small for νm ≥ δmνM}. (9)

Then we say that the chain has a cycle of length d.

Subsequently, the period of a ϕ-irreducible Markov chain is defined as the largest
cycle length. If the period is 1, the chain is called aperiodic, and periodic
otherwise. The periodicity of a chain tells us in some sense whether there are
some constraints put on at what time steps it is possible to return to some part
of the state-space. If aperiodic, there are no constraints.

Moreover, we have the notions of recurrence and transience. Although a ϕ-
irreducible Markov chain provides the possibility of reaching every set at some
point in the chain, it does not provide any information of whether it actually
occurs, or how often it does. Therefore, we define recurrent and transient sets,
that provides exactly this information.

Definition 7 (Recurrent sets). A set A is called recurrent for a Markov chain
if

E(ηA |X0 = x) = +∞, ∀x ∈ A (10)

Definition 8 (Transient sets). A set A is called uniformly transient for a
Markov chain if there exists M ∈ N>0 such that

E(ηA |X0 = x) < M, ∀x ∈ A (11)

11

and transient if there exists a countable collection of uniformly transient sets
{Bi} such that

A =
⋃
i

Bi. (12)

This leads us to defining recurrent and transient Markov chains.

Definition 9 (Recurrent Markov chain). A ϕ-irreducible Markov chain (Xn)
is recurrent if for every set A ∈ E such that ϕ(A) > 0, A is recurrent.

Definition 10 (Transient Markov Chain). A ϕ-irreducible Markov chain is
transient if the state space E is transient.

Thus, for a Markov chain to be recurrent means that the chain will keep explor-
ing the whole state space in the long run, whereas a transient Markov chain can
not make any such guarantees, possibly not returning at all to certain areas of
the space. There is, however, an even stronger property than recurrence, named
Harris recurrence.

Definition 11 (Harris recurrent set). A set A is Harris recurrent if

P (ηA = +∞|X0 = x) = 1, ∀x ∈ A (13)

Definition 12 (Harris recurrent Markov chain). A ϕ-irreducible Markov chain
is Harris recurrent if every set A such that ϕ(A) > 0 is Harris recurrent.

In contrast to normal recurrency, which ensures that on average all sets will
be reached infinitely many times, a Harris recurrent Markov chain ensures that
this will happen for all realisations of the Markov chain.

Another property of a Markov chain that is important is if the chain has a
stationary distribution, or an invariant probability measure. The existence of
such a measure is central to Markov Chain Monte Carlo methods.

Definition 13 (Invariant measure). Let π be a σ-finite measure on (E, E), and
let (Xn) be a Markov chain with transition kernel K. If it holds that

π(A) =

∫
E

K(x,A)π(dx), ∀A ∈ E. (14)

Then π is invariant for K and the chain (Xn).

A ϕ-irreducible chain is called positive if it has an invariant probability measure,
and null otherwise [6]. It is possible to show that if the chain is positive, it is
also recurrent. If an invariant probability measure π exists for the chain, it is
also called its stationary distribution.

We now turn to an important condition named the detailed balance condi-
tion.

12

Definition 14 (detailed balance condition). We say that a Markov chain (Xn)
with transition probability kernel K satisfies the detailed balance condition
if for some function f it holds that

K(y, x)f(y) = K(x, y)f(x), ∀(x, y) ∈ E × E (15)

We also include the definition of a reversible Markov chain, as it is connected
to the theorem that will follow.

Definition 15 (Reversible Markov chain). A Markov chain is reversible if

P (Xn+2 ∈ A |Xn+1 = x) = P (Xn+1 ∈ A |Xn = x) (16)

Now the following theorem gives us a condition that will ensure that some
density is invariant to a Markov chain, and showcases the importance of the
detailed balance condition.

Theorem 4. If a Markov chain satisfies the detailed balance condition for a
probability density f , then the Markov chain:

1. has f as its invariant probability density

2. is reversible

Finally, most of the important properties of Markov chains that are of use to us
have now been introduced, and what remains in this section is to connect these
properties to convergence theorems. For this purpose, we first define the total
variation distance.

Definition 16 (total variation distance). For two probability measures µ1, µ2

on (E, E) the total variation distance is

||µ1 − µ2||TV = sup
A∈E
|µ1(A)− µ2(A)| (17)

Now we answer the question of when the Markov chain converges to its station-
ary distribution with time.

Theorem 5. For an aperiodic Harris positive Markov chain (Xn) with proba-
bility transition kernel K, and invariant probability measure π, it holds that

lim
n→∞

∥∥∥∥∫ Kn(x, ·)µ(dx)− π

∥∥∥∥
TV

→ 0 (18)

for all initial distributions µ.

We will call such Markov chains ergodic. For the partial sums

SN (h) =

N∑
i=1

h(Xi). (19)

we have the following result.

13

Theorem 6. Let π be a σ-finite invariant probability measure for (Xn), given
that it exists. Then the chain is Harris recurrent if and only if for f, g ∈ L1(π),
with

∫
g(x)π(dx) ̸= 0, it holds that

lim
N→∞

SN (f)

SN (g)
=

∫
f(x)π(dx)∫
g(x)π(dx)

. (20)

In particular, if g(x) = 1, we have that

lim
N→∞

1

N

N∑
i=1

f(Xi) =

∫
f(x)π(dx). (21)

We let these last two convergence theorems conclude the theory of Markov
chains, and we proceed in the next section with the simulation technique named
Markov Chain Monte Carlo.

3.2 Markov Chain Monte Carlo

In statistics it is sometimes of interest to simulate random variables from some
distribution f . For example, the computation of the integral

EX∼f [h(X)] =

∫
h(x)f(x) dx (22)

is sometimes approximated by directly simulating from f and taking the mean

1

n

n∑
i=1

h(Xn) (23)

as its approximation. As in our problem, it is not always feasible to directly
simulate from a distribution. Therefore, other methods have to be explored
that can indirectly simulate distributions. One such method is Markov Chain
Monte Carlo (MCMC). In general, MCMC based methods work by designing an
ergodic Markov chain with f as its stationary distribution, and we have seen in
the previous chapter for example that through Theorem 6, the average partial
sums of such chains also converge.

We go on to describe the Metropolis-Hastings algorithm, a popular MCMC tech-
nique.

3.2.1 The Metropolis-Hastings algorithm

In Metropolis-Hastings, we generate a next proposal point from a proposal con-
ditional density q, and construct a chain such that, under some conditions on
q, it is ergodic with a target density f as its invariant probability density. We
present Metropolis-Hastings in Algorithm 1. Some conditions on f and q is that
supp f is connected, and that

supp f ⊂
⋃

x∈supp f

supp q(· |x). (24)

14

Algorithm 1 Metropolis-Hastings Algorithm

Input: Current state Xn, target density f , proposal density q
Output: Next state Xn+1

1: Generate Yn |Xn ∼ q(y |Xn)
2: Set next state as

Xn+1 =

{
Yn, with probability ρ(Xn, Yn),

Xn, with probability 1− ρ(Xn, Yn)
(25)

with

ρ(x, y) = min

{
1,

f(y)

f(x)

q(x | y)
q(y |x)

}
(26)

We would like the conditions of Theorem 5 to be satisfied for the Metropolis-
Hastings Markov chain. That is, we want it to be an aperiodic Harris positive
Markov chain. It can be shown that the transition kernel K of the chain con-
structed by Metropolis-Hastings satisfies the detailed balance condition for
the target density f . Then we can conclude by Theorem 4 that the chain is posi-
tive with f as its invariant probability density. Furthermore, there are sufficient
conditions on q that guarantee that the chain is also an aperiodic Harris recur-
rent chain. The first conditions is that the proposal density is positive

q(y |x) > 0, ∀x, y ∈ supp f, (27)

and the other is that the chain is aperiodic, allowing a one-step transition back
to the current state, Xn+1 = Xn. That is

P

(
f(Yn)

f(Xn)

q(Xn |Yn)

q(Yn |Xn)
< 1

)
> 0. (28)

If these conditions hold, then we can invoke Theorem 5 and 6 and say that the
Metropolis-Hastings chain is ergodic with invariant probability density f .

3.2.2 Reducing the dependency

The sample generated using MCMC methods is generally a dependent sam-
ple from the target distribution. Depending on the problem, this dependency
might need to be reduced. One way to achieve this is to sample from different
independent Markov chains. Another option is to perform a thinning of the
chain by subsampling every k:th value instead. The new chain would then be
(Xk·m)m∈N. Theoretically, subsampling with k = ∞ would be optimal, since
then the next sample converges to the stationary distribution regardless of the
previous sample. In practice this is not possible. Instead, the choice of thin-
ning parameter could for example be chosen as the minimal lag that gives an
insignificant autocorrelation of the chain, where we define the autocorrelation

15

function at lag k of a chain as [4]

ρ(k) = lim
n→∞

Cov(Xn, Xn+k)

Var(Xn)
. (29)

With a sample of a chain of length N, the autocorrelation at lag k can be
estimated as [4]

ρ̂(k) =
1

N − k

N−k∑
n=1

(xn − x̄)(xn+k − x̄). (30)

Related to this is the integrated autocorrelation time, which measures the amount
of iterations that is needed to generate an independent sample from target dis-
tribution [4]. We define it as the sum

τ = 1 + 2

∞∑
k=1

ρ(k). (31)

The integrated autocorrelation time can be estimated by

τ̂ = 1 + 2

M∑
k=1

ρ̂(k)

for some appropriately chosen M < N [10]. Then the integrated autocorrelation
time can be used as a guideline for the choice of thinning.

4 Sampling methods

The relevant theory surrounding Markov Chain Monte Carlo methods have been
explained, and we now focus on the specific methods used to solve our problem.
Let some general convex polytope be denoted by

C = {x ∈ Rd : Ax ≤ b}.

Our problem is to generate vectors Xi ∈ C, such that they are i.i.d uniformly
on the polytope

X1, X2, . . . ,
i.i.d∼ Uniform(C).

Since this distribution is difficult to directly simulate, with the earlier presented
theory in mind, we can instead use MCMCmethods to construct ergodic Markov
chains with the uniform distribution as its stationary distribution. This will
produce dependent samples that by Theorem 5 converges to the uniform distri-
bution in the limit.

In the following section we present two MCMC techniques that can be used for
sampling on convex polytopes: the Hit-and-run, and the Vaidya walk.

16

4.1 Hit-and-run

Hit and run algorithms are a class of algorithms used to simulate arbitrary
distributions on Rd [1], we consider the case where the target distribution is
the uniform distribution, referred to in [1] as the ”Hypersphere Directions
algorithm”. Hit and run is a symmetric mixing algorithm [9] which induces a
markov chain (X0, X1, ...). The induced markov chain is ergodic and has the
uniform distribution over the bounded space in which it runs as the stationary
distribution. Let ∂D be the boundary of the d-dimensional unit-sphere and let
C be the convex polytope we are sampling from.

Algorithm 2 Hit and run

Input: x0 ∈ C
1: v ← uniformly chosen point on ∂D
2: t← uniformly chosen point from {t ∈ R | vt+ xn ∈ C}
3: xn+1 ← xn + vt

4.1.1 Choosing a random point on ∂D

To choose a random direction in Rd we create a vector w = (X1, ..., Xd) consist-
ing of d independent normally distributed variables, w ∼ Nd(0, Id). Then the
vector v = w

∥w∥ is a vector uniformly distributed over the d− dimensional unit

sphere.

4.1.2 Finding the distance to the boundary of the convex poly-
tope

Since our current point x is inside the convex polytope C we know that we
are on the ”correct” side of every hyperplane defining it. Hence to find the
furthest travel along the vector v in both directions we need to find the closest
hyperplane along the line L = vt+x in both directions. The intersection between
a hyperplane H = a · x and a line L = vt + x can be found in the following
way:

a · (vt+ x) = a · vt+ a · x = ta · v + a · x = H =⇒ t =
H − a · x

a · v

Hence since ||v|| = 1, H−a·x
a·v is the distance along v to the hyperplane from x.

Since each row ai in A together with bi in b defines a hyperplane we can find
the distance by:

b = (H1, ...,Hm) =⇒ b−Ax = (H1 − a1 · x, ...,Hm − am · x)
Av = (a1 · v, ..., am · v)

17

Element-wise division gives us:

t⃗ := (
H1 − a1 · x

a1 · v
, ...,

Hm − am · x
am · v

)

4.1.3 Choosing the next point

The smallest positive value t+ and largest negative value t− in t⃗ are the distances
we can travel along v before hitting a hyperplane in the positive and negative
direction respectively. The next point is chosen to be vt+x where t ∼ U(t−, t+).
The algorithm is summarised above as Algorithm 2.

4.2 Vaidya Walk

The Vaidya Walk is a Metropolis-Hastings algorithm (as previously described in
Algorithm 1) developed for sampling points uniformly from a convex polytope
[3]. The method is inspired by interior point methods in optimization, utilizing
the combination of a volumetric and logarithmic barrier function to generate
new proposal points in the polytope. The logarithmic barrier function is defined
as

F(x) := −
n∑

i=1

log (bi − aTi x) (32)

with the hessian

∇2F(x) =
n∑

i=1

aia
T
i

s2x,i
(33)

and sx,i := bi − aTi x, being the slackness at x for the i:th constraint. The
volumetric barrier function is defined as

v(x) = log det∇2F(x). (34)

The creators of the walk base their work on another barrier function, that we
will call the Vaidya barrier function V(x), that combines the logarithmic and
volumetric barrier:

V(x) := v(x) + βV F(x) (35)

with βV := d/n. The matrix that is central to sampling new points in the
Vaidya Walk is the positive definite matrix [2]

V (x) :=

n∑
i=1

(σx,i + βV)
aia

T
i

s2x,i
(36)

18

where σx,i =
aT
i (∇2F(x))−1ai

s2x,i
, are the so called leverage scores. This matrix is

related to the hessian of the Vaidya barrier, and it holds that

5vT ∇2V(x) v ≥ vT V (x) v ≥ vT ∇2V(x) v, ∀v ∈ Rd. (37)

In the Vaidya Walk, given a point in the interior of our polytope, x ∈ int (C),
and some radius r, a new point Y is proposed from the multivariate normal
distribution

Y |X = x ∼ N (x,
r2√
nd

V −1(x)). (38)

Thus, a scaled inverse of the matrix V (x) is used as the covariance matrix in
our proposal distribution, and the proposal conditional density is

p(y |x) =
√
detV (x)

(
nd

2πr2

)d/2

exp

(
−
√
nd

2r2
(y − x)TV (x)(y − x)

)
. (39)

The target density is uniform on the polytope

f(x) =
1

Vol (C)
, ∀x ∈ C (40)

and thus the target densities are canceled out in the acceptance probabil-
ity

ρ(x, y) =

{
min

{
1, p(x | y)

p(y | x)

}
, y ∈ C

0, y ̸∈ C.
(41)

The algorithm we use is presented in Algorithm 3. It is an adaptation of the
original Vaidya walk that does not explicitly set Xn+1 = Xn in case of rejec-
tion. The reason for this is because we want the players generated to the user
to be unique. This might, however, weaken the theoretical guarantees, as the
Markov chain is not explicitly aperiodic anymore. Without the adaptation how-
ever, this algorithm would produce an ergodic Markov chain, since the proposal
conditional density p satisfies both condition 27 and 28.

19

Algorithm 3 Vaidya Walk, edited non-repeating, non-lazy version [2]

Input: Radius r > 0, x0 ∈ int (C)
Output: Sequence x1, x2, . . . uniformly sampled from C
1: for i = 0, 1, . . . do
2: ξi+1 ∼ N (0, Id)
3: yi+1 ← xi +

r
(nd)1/4

V (xi)
−1/2ξi+1

4: if yi+1 /∈ C then
5: go to line 2
6: else
7: αi+1 ← min

{
1, p(xi | yi)

p(yi+1 | xi)

}
8: Ui+1 ∼ U(0, 1)
9: if Ui+1 ≥ αi+1 then

10: go to line 2
11: else
12: xi+1 ← yi+1

13: end if
14: end if
15: end for

4.3 Implementation

The sample (X0, X1, ..., Xn) generated by Hit-and-run and Vaidya Walk ap-
proach a uniform distribution as n increases. But the variables Xi and Xi+1 are
highly correlated and often close together in space. We want neither of these
properties, and to mitigate this we utilize thinning, hence we instead get the
sample (X0, Xm, ..., Xnm) where m is the amount of thinning we do. For large
m the previous value in the chain is ”forgotten” and the value of Xi+1 is as if
chosen from the stationary distribution of the chain which in this case is the
uniform distribution. The correlation between successive samples can also be
reduced by running multiple chains in parallel and randomly selecting one from
which to draw the next sample.

Given a position and an overall rating we construct the convex polytopes K
and K′ together with the matrix N and vector t⃗ as described in theorems 1 and
2. Let p ∈ N be the number of chains to run in parallel and let m ∈ N be
the amount of thinning to use. Since the convex polytopes are specific for each
unique pair of position and rating we need to keep track of the current state of
all p chains for each such pair and continue from there the next time we generate
a player of that type. An initial point to start the algorithm from can be found
with any number of linear programming methods, such as the method described
by Chungmok Lee and Sungsoo Park[5] for finding the Chebyshev center.

We create a new player according to Algorithm 4 where on line 5 we use either
Hit and run(Algorithm 2) or Vaidya walk(Algorithm 3).

20

Algorithm 4 Generate random player of given position and rating

Input: x⃗0 := (x00 , x10 , ..., xp0
) ∈ K′p, p,m ∈ N, N and t⃗

1: i← 0
2: n← 0
3: while i < m do
4: j ← 0
5: while j < p do
6: ⃗xn+1[j]←Hit and run(x⃗n[j]) or Vaidya walk(x⃗n[j])
7: j ← j + 1
8: end while
9: i← i+ 1

10: n← n+ 1
11: end while
12: r ← Uniformly chosen integer from 0 to and excluding p
13: return N(xm[r]) + t

Let (N(X0)+t, N(Xm)+t, . . . , N(Xnm)+t) be the sample generated by running
the above algorithm n times, the sample (X0, Xm, . . . , Xnm) approaches the
uniform distribution for large n and for large values of m and p the correlation
between the X ′

is approaches zero. Then the X ′
is approach being ”independent”

and uniformly distributed random variables, and from theorem 3 we know that
the (N(Xi) + t)′s have the same properties and they are valid players of the
given position and rating.

5 Results and analysis

5.1 Criteria

There are mainly three criteria and diagnostics that are of interest to us, and
that will be presented in the coming results. One is the autocorrelation of the
chain at different time lags, which signifies the correlation between generated
players. We want this value to be low so that the players are as close to ran-
dom and independent as possible. Another is the trace plot of the different
stats, that gives a good overview of the general movement of the chain. If the
trace plot looks as if the moves are random with wide jumps, it signifies good
behaviour and low autocorrelation. Lastly, we are interested in the runtime of
the algorithms. The players need to be generated fast, preferably under 20 ms
per player, to satisfy the users of the game. To find suitable parameters for
the methods, one must weigh the randomness of the player generation and its
runtime against each other, and find a good balance.

21

5.2 Effects of parameters

We present here how the thinning parameter and number of parallel chains affect
the different criteria for both algorithms, and the results are based on generated
centre backs with overall rating of 70 with a focus on the defending mainstat in
the plots that will follow. The effect of thinning is shown in figure 2 and 3 for
the Hit-and-run and the Vaidya walk respectively.

Figure 2: Hit and run effects of thinning

For the Hit-and-run, the trace plots show more variation and less autocorre-
lation with increasing size of thinning parameter. Furthermore, even though
the runtime increases with larger thinning, it is in these examples not close to
reaching the performance threshold of 20 ms. And as expected, the autocor-
relation plots show a decrease with increased thinning, but subsampling every
100:th player does not result in insignificant autocorrelation.

22

Figure 3: Vaidya walk effects of thinning

Similar results hold for the Vaidya walk. The trace plots shows increased varia-
tion and decreased autocorrelation. Note that the thinning used is much lower
for the Vaidya walk. By inspecting the boxplots of sampling times, the time is
already high with no thinning, and almost reaches the threshold for performance
when subsampling every 10:th player, with the variation in sampling time also
being high. The autocorrelation is still significant in all cases.

The effect of parallel chains is shown in figures 4 and 5.

23

Figure 4: Hit and run effects of multiple chains

It is apparent at once that increasing the amount of chains for the Hit-and-run
improves the trace plot and decreases the autocorrelations significantly, while
not having a substantial negative impact on the sampling time in relation to
the performance threshold.

24

Figure 5: Vaidya walk effects of multiple chains

Once again, similar results are seen for the Vaidya walk. The trace plots are
improved, and autocorrelation decreased to insignificant levels with 10 chains.
With the combination of 10 iterations and several chains, however, the sampling
time is high relative to the performance threshold. The integrated autocorrela-
tion time has been mentioned before as a guideline for the choice of thinning,
and we present results related to that in figure 6.

25

Figure 6: Hit and run using integrated autocorrelation

This plot shows hit-and-run using a thinning equal to the estimated integrated
autocorrelation time (IAT) with one chain and thinning equal to one fifth of the
IAT with ten chains. The trace plots appear similar, with low autocorrelation
and no discernible patterns. With thinning equal to the IAT, the autocorre-
lations are insignficiant for all time lags, and almost insignificant for all time

26

lags in the other case. The average sampling times using the IAT has increased
slightly above the performance threshold, with some outliers that are signif-
icantly higher. In the other case with a fifth of the thinning and 10 chains,
the sampling times are not above the performance threshold, except for some
outliers.

In figure 7 the effects of thinning across all stats for successive players are shown.
For a player there is a marker in the row corresponding to a stat if any of the
previous players(in the window=1) same stat was within the threshold(±2 in
this case).

Figure 7: Effects of thinning on similarity of stats for successive players

In figure 7 we see that increasing thinning reduces the likelihood of successive
players having similar stats. But even if the players were sampled from the
uniform distribution we would expect to see some successive players have stats

27

be within the threshold.

6 Discussion

The general take-away from the results is that the Hit-and-run algorithm has
a fast sampling time relative to the performance threshold, with acceptable
sampling performance, while the Vaidya walk is slow for similar sampling per-
formance. The most significant negative impact on sampling time is the thinning
parameter. In the case of Hit-and-Run, it is originally so fast that the thinning
parameter can be increased significantly without exceeding the performance
threshold, and it is possible to increase to higher than 100 iterations to further
reduce the autocorrelation. The same can not be said about the Vaidya walk,
already approaching the performance threshold of the sampling time at 10 iter-
ations. Since the results are only for a 1000 generated players, it is fully possible
for the outliers in the sampling time to be drastically higher. Thus, even though
the autocorrelation is not sufficiently low, thinning can not be increased much
further for the Vaidya walk.

The use of parallel Markov chains has a tremendous impact on the autocorre-
lation for both algorithms. With 10 chains, the autocorrelation is reduced to
almost insignificant levels for the Hit-and-run, and insignificant for the Vaidya
walk. If the iterations are increased for the Hit-and-run, the autocorrelation
would eventually reach insignificant levels as well. Parallel chains also have the
effect of increasing the sampling time. Most likely this is due to the sampling fin-
ishing only when the slowest chain is finished, as well as the overhead of launch-
ing and joining threads. The increase is not significant for the Hit-and-run, but
it is for the Vaidya walk, where both using 3 and 10 chains (with 10 iterations)
increases the average sampling time to levels above the performance threshold.
Therefore, one must choose more carefully the right amounts of thinning and
parallel chains as to not make the Vaidya walk completely impractical.

There is always a balance between having samples with low correlation and
having a low sampling time. As such, the integrated autocorrelation time can
serve as a reference for the minimal thinning needed for ”optimality”, in terms
of dependency between the samples. It might not be suitable with respect to the
sampling time, however, as is visible in figure 6. Since the use of multiple chains
has also been shown to decrease dependency while not increasing the sampling
time substantially, adding more chains and lowering the thinning from the IAT
makes it possible to decrease the sampling time at the same time as preserving
low dependency. This is also observed in the same figure.

One of the important criteria is the uniqueness of the players that are gener-
ated. Although the algorithms show good behaviour on larger scales they still
have issues on small scales, they may for example get stuck for a few iterations
and yield very similar players. Increasing thinning mitigates this problem as
can be seen in figure 7, but the required amount of thinning to guarantee good

28

behaviour on all scales is too large to be usable in real-time without further
optimization. Therefore we recommend setting the thinning parameter differ-
ently depending on the immediate situation in the game. For example when
a user opens a ”player pack” and it is determined the user will receive more
than one player of the same position and rating the thinning parameter can be
set to be much larger than in regular use of the algorithm. Implementing it
this way keeps the algorithm showing good behaviour on a large scale with low
run-time cost while allowing it to also exhibit the desired behaviour on a small
scale whenever observed by a user.

In this paper we have targeted a uniform distribution believing that it will
yield the most ”random” feeling players to the users. But what feels random to
people is not necessarily what is mathematically random, for example generating
a player while maximizing the distance to the previous player may generate a
more ”random feeling” player, that would however not work in the long term
since the algorithm would be predictable. Furthermore, changing the algorithm
may change or cause it to altogether lose some mathematical properties, which
makes further development of the algorithm and interpretation of the results
harder to reason about, yet it may be a worthwhile trade-off.

There is also something to be said about the complexity of the algorithms.
In practice, the Hit-and-run is both simpler to understand and to implement
compared to the Vaidya walk, making it especially more suitable for a company
that might prefer simplicity. Furthermore, a constant radius of 1 was used in the
results gathered for the Vaidya walk. In reality, the radius should be chosen dif-
ferently depending on the position and overall rating, and hence polytope, that
is being sampled, such that a good balance between exploration and exploitation
is reached. This increases the complexity of the algorithm even further.

When taking both the results and the complexity of the algorithms into consid-
eration, the Hit-and-run stands out as the preferred method for this particular
problem.

29

Appendix A Linear algebra

In this appendix we shortly define the linear algebra concepts that are the foun-
dation of the mathematical interpretation of our problem. First is the definition
of a hyperplane, which is equivalent to linear equality constraints.

Definition 17 (Hyperplane in Rn). Let a ∈ Rn and b ∈ R then the affine
subspace defined by H := {x ∈ Rn | a · x = b} is a Hyperplane.

Secondly is the idea of a closed halfspace, related to linear inequality con-
straints.

Definition 18 (Closed Halfspace in Rn). Let a ∈ Rn and b ∈ R then the set
defined by H := {x ∈ Rn | a · x ≤ b} is a Closed Halfspace. It is the region
of space one side of a hyperplane.

And lastly, we define convex polytopes.

Definition 19 (Convex polytope in Rn). A convex polytope is the intersection
of finitely many closed halfspaces that is bounded. It is the solutions to the
system of linear inequalities:

a11x+ a12x+ ...+ a1nx ≤ b1
a21x+ a22x+ ...+ a2nx ≤ b2

.

.

.
am1x+ am2x+ ...+ amnx ≤ bm

Where m is the number of halfspaces. This can be expressed as Ax ≤ b where
the inequality is element-wise.

Appendix B Probability and Measure theory

The main purpose of this appendix is to introduce basic probability and measure
theory concepts that are needed before dealing with Markov chains with contin-
uous state space. The following theory is heavily based on the exposition done
by Çinlar [11], and we refer the reader there for a more thorough introduction.
We start by defining algebras and σ-algebras.

Definition 20 (Algebra). Let E be a set, and E be a non-empty collection of
subsets of E. E is called an algebra on E if it is closed under finite unions and
complements.

Definition 21 (σ-Algebra). E is a σ-algebra on E if it is closed under countable
unions and complements.

Furthermore, we have a special type of σ-algebra for topological spaces such as
Rd that we deal with, called Borel σ-algebra.

30

Definition 22 (Borel σ-Algebra). If E is a topological space and E is the small-
est collection of all open subsets of E, then E is called the Borel σ-algebra on E,
often denoted as B(E).

With these definitions in place we can then go on to define the notions of measur-
able spaces, measures on measurable spaces, and finally, the resulting measure
space.

Definition 23 (Measurable Space). If E is a set and E a σ-algebra on E, then
the pair (E, E) is called a measurable space, and the elements of E are called
measurable sets.

Connected to measurable spaces are so called measurable functions.

Definition 24 (Measurable function). If (E, E) and (F,F) are measurable
spaces, and f is a mapping f : E 7→ F such that f−1B ∈ E for every B ∈ F ,
then f is called measurable relative to E and F , or alternatively, E-measurable.

In addition, the notion of a measure on measurable spaces is a crucial con-
cept.

Definition 25 (Measure). A measure on a measurable space (E, E) is a mapping
µ : E 7→ R̄+ = [0,+∞] such that

• µ({∅}) = 0

• µ(
⋃

n An) =
∑

n µ(An) for every disjointed sequence (An) ∈ E.

If there exists a measurable partition (En) of E such that µ(En) <∞ for all n,
then the measure µ is called σ-finite.

Definition 26 (Measure Space). The triplet (E, E , µ) is called a measure space.

We continue by defining probability measures and probability spaces, which are
simply special cases of measures spaces.

Definition 27 (Probability Measure). A measure µ on a measurable space
(E, E) is called a probability measure if µ(E) = 1.

Definition 28 (Probability Space). The measure space (E, E , µ) is a probability
space if µ is a probability measure.

Finally, an idea that is going to be of importance to know about are transition
kernels, which are going to be used to represent probabilities of transitioning
into certain areas in the space.

Definition 29 (Transition Kernel). If (E, E) and (F,F) are measurable spaces,
and K is a mapping K : E ×F 7→ R̄+ such that

• ∀B ∈ F , K(·, B) is a measurable function

• ∀x ∈ E, K(x, ·) is a measure on (F,F)

then K is called a transition kernel from (E, E) into (F,F).

31

For our purposes, we would like a measurable space (E, E) to transition into
itself, and for K(x, ·) to be a probability measure. If the former holds, we say
it is a transition kernel on (E, E). If the latter holds, we call it a transition
probability kernel or a Markov kernel. If both are true, we have a transition
probability / Markov kernel on (E, E).

It is possible to define a transition kernel through an integral, called an integral
kernel [7]. If ν is some positive σ-finite measure on the measurable space (E, E),
and k a function k : E × E 7→ R+ that is measurable relative to the product
σ-algebra E ⊗ E , a kernel K on (E, E) can be defined as

K(x,A) =

∫
A

k(x, y) ν(dy). (42)

Then if for example k(x, ·) is some density on E = Rd, and ν the Lebesgue
measure, we can define a Markov Kernel

K(x,A) =

∫
A

k(x, y) dy . (43)

It follows that K(x,E) = 1, and we call such a function k a transition density,
and it can be interpreted as a conditional density.

32

References

[1] Claude J. P. Bélisle, H. Edwin Romeijn, and Robert L. Smith. Hit-and-
run algorithms for generating multivariate distributions. Mathematics of
Operations Research, 18(2):255–266, 1993.

[2] Yuansi Chen, Raaz Dwivedi, Martin J. Wainwright, and Bin Yu. Vaidya
walk: A sampling algorithm based on the volumetric barrier. In 2017 55th
Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 1220–1227, 2017.

[3] Yuansi Chen, Raaz Dwivedi, Martin J. Wainwright, and Bin Yu. Fast mcmc
sampling algorithms on polytopes, 2019.

[4] Daniel Foreman-Mackey, David W. Hogg, Dustin Lang, and Jonathan
Goodman. emcee: The mcmc hammer. Publications of the Astronomi-
cal Society of the Pacific, 125(925):306, feb 2013.

[5] Chungmok Lee and Sungsoo Park. Chebyshev center based column gener-
ation. Discrete Applied Mathematics, 159:2251–2265, 12 2011.

[6] S. P. (Sean P.) Meyn and Richard L. Tweedie. Markov chains and stochastic
stability. Communications and control engineering series. Springer-Vlg,
Berlin ;, 1993.

[7] D. Revuz. Markov chains. North-Holland mathematical library ; 11. North-
Holland, Amsterdam, rev. ed. edition, 1984.

[8] Christian P. Robert and George Casella. Monte Carlo statistical methods.
Springer texts in statistics. Springer, New York, 1999.

[9] Robert L. Smith. Efficient monte carlo procedures for generating points uni-
formly distributed over bounded regions. Operations Research, 32(6):1296–
1308, 1984.

[10] A. Sokal. Monte carlo methods in statistical mechanics: Foundations and
new algorithms. In Functional Integration, NATO ASI Series, pages 131–
192. Springer US, Boston, MA.

[11] Erhan. Çınlar. Probability and Stochastics. Graduate Texts in Mathematics,
261. Springer New York, New York, NY, 1st ed. 2011. edition, 2011.

33

	c8a2e9dd-5461-49e9-aaea-e0a0b07758ad.pdf
	Abstract
	Contribution
	Introduction
	Background
	Problem specification

	Mathematical interpretation
	Isometric transformation to a convex polytope

	Prerequisite theory
	Markov Chains
	Markov Chain Monte Carlo
	The Metropolis-Hastings algorithm
	Reducing the dependency

	Sampling methods
	Hit-and-run
	Choosing a random point on D
	Finding the distance to the boundary of the convex polytope
	Choosing the next point

	Vaidya Walk
	Implementation

	Results and analysis
	Criteria
	Effects of parameters

	Discussion
	Linear algebra
	Probability and Measure theory

